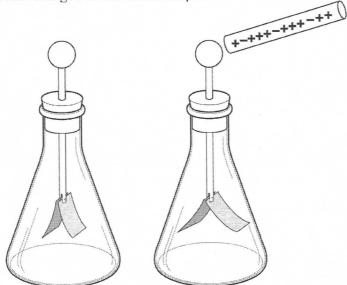
CHAPTER 10

Section 10.2 Review (Alternative Format)


BLM 10-16

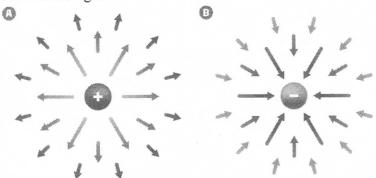
Goal • To review the concepts from Section 10.2.

- 1. Draw a line to match each term with its effect.
 - · charging by contact
- · changes distribution of electrons on another object, but does not change the object's overall charge

charging by friction

- · generates opposite charges on the materials rubbed together
- · charging by induction
- · generates the same type of charge on the neutral object as the charged object
- 2. A metal leaf electroscope is charged. A positively charged rod moves near the sphere.
 - a. Draw charges on the electroscope.

- (positive / negative). **b.** The charge on the electroscope is _
- c. How would the diagram change if the sphere and rod were insulators?
 - A. The leaves would get closer together.
 - B. The leaves would move apart.
 - C. No change.


Explain how you know.	

CHAPTER 10

BLM 10-16 (continued)

Section 10.2 Review (Alternative Format)

3. Look at this figure.

The strength of an object's electric field _ (increases / decreases) as distance increases.

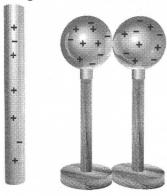
4.	You can charge a balloon by rubbing it against you	r clothing.	Then y	ou can	stick the	charged	balloon
	to a wall.						

a. The wall is charged by	(contact / friction / induction) because	

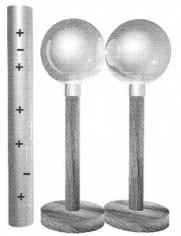
b.	The balloon eventually falls from the wall because	

5. A negatively charged ebonite rod is held near a pi	th ball electroscope.
If the charge of the pith ball is positive, then the p	ith ball will
If the charge of the pith ball is neutral, then the pit	h ball will

If the charge of the pith ball is negative, then the pith ball will

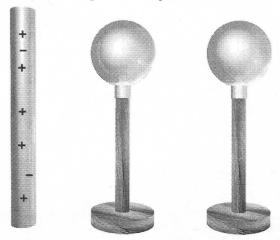

6. You are given wool and material X. You have a pith ball electroscope.			
How can you tell which material holds on to its electrons more strongly?			

CHAPTER 10


Section 10.2 Review (Alternative Format)

BLM 10-16 (continued)

7. The diagram shows representative charges on a rod and two identical metal spheres.


- a. What is the charge on the rod?
- **b.** The rod is moved closer to the spheres. Draw the resulting charges.
- **c.** One sphere is moved away. Draw the resulting charges.

d. The rod is moved away. Draw the charges on the spheres and the rod.

